Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system.
نویسندگان
چکیده
During development of Xenopus laevis, the supraorbital lateral line system (i.e. the parietal and supraorbital lines of organs and the anterior auditory group of organs) is all derived from a single primordium located in the ear region of the epidermis. The primordium elongates first by active movement along the dorsal margin of the eye. Individual primary organs are then formed by progressive fragmentation of the streak-like primordium. After fragmentation, passive displacement of the organs due to skin growth seems to play the main role in altering the arrangement of the line system. Transplantation experiments confirmed that non-placodal epidermal cells are not incorporated into the developing system. The active elongation of the primordium is due to cell multiplication, and not due to cell rearrangement or change in cell shape or size. Cell multiplication is not confined to a growth zone, but dividing cells are randomly distributed throughout the primordium. All cells of a primordium have to change position during its elongation.
منابع مشابه
Development of the lateral line system in Xenopus laevis
During development of Xenopus laevis, the supraorbital lateral line system (i.e. the parietal and supraorbital lines of organs and the anterior auditory group of organs) is all derived from a single primordium located in the ear region of the epidermis. The primordium elongates first by active movement along the dorsal margin of the eye. Individual primary organs are then formed by progressive ...
متن کاملDevelopment of the lateral line system in Xenopus laevis. III. Development of the supraorbital system in triploid embryos and larvae.
During normal development of the supraorbital lateral line system of Xenopus, an elongated streak of primordial cells becomes subdivided into a linear series of cell groups containing only about eight cells each, thus forming a row of primary lateral line organs (Winklbauer & Hausen, 1983a,b). In triploid Xenopus embryos, cell size is 1.5 X normal. When the formation of lateral line organs occu...
متن کاملDevelopment of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system.
The periodic pattern of the supraorbital lateral line organs forms in the epidermis of Xenopus by the subdivision of a streak-like primordium into a linear series of small cell groups. In normal development, each such organ initially contains about 8 cells (Winklbauer & Hausen, 1983a,b). To see whether this initial organ size depends on the size of the streak-like primordium at the time of orga...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of embryology and experimental morphology
دوره 76 شماره
صفحات -
تاریخ انتشار 1983